|
![]() ![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Deutsche Version Homepage About me Satellitephotos Family Tree Sorbs Murphy's Laws Mandelbrot Mensa Riddles Links Disclaimer |
Row approach for the row 4, 4, 7, X, 103F(n) = (a + b*n)*F(n-1) + c + d*n with F(0) = 4 Applied accordingly it results: F(1) = (a + 1b)*F(0) + c + 1d = 4a + 4b + c + d = 4 F(2) = (a + 2b)*F(1) + c + 2d = 4a + 8b + c + 2d = 7 F(3) = (a + 3b)*F(2) + c + 3d = 7a + 21b + c + 3d = X F(4) = (a + 4b)*F(3) + c + 4d = Xa + 4Xb + c + 4d = 103 Solving this system of equations delivers the parameters depending on X: a = (4X2 - 56X - 650) / (3X - 12) b = (-X2 + 14X + 230) / (3X - 12) c = (-16X2 + 227X + 2588) / (3X- 12) d = (4X2 - 47X - 956) / (3X - 12) Anyhow, so you get solutions for nine whole-numbered X with whole-numbered continuations after the 103:
back to the Mensa-page In case of questions or suggestions just write an Email to me. |